Early lineage segregation of primary myotubes from secondary myotubes and adult muscle stem cells
Gauthier Toulouse,
William Jarassier,
Sabrina Jagot,
Valérie Morin,
Fabien Grand () and
Christophe Marcelle ()
Additional contact information
Gauthier Toulouse: INSERM
William Jarassier: INSERM
Sabrina Jagot: INSERM
Valérie Morin: INSERM
Fabien Grand: INSERM
Christophe Marcelle: INSERM
Nature Communications, 2025, vol. 16, issue 1, 1-18
Abstract:
Abstract Myogenesis in amniotes occurs in two waves. Primary myotubes express slow myosin (often with fast myosin) and likely act as scaffolds for secondary myotubes, which express only fast myosin. The embryonic origins and relationships of these lineages, and their connection to satellite cells, remain unknown. Here, we combine a TCF-LEF/β-catenin signaling reporter with precise in vivo electroporation in avian embryos to trace limb muscle progenitors from early migration to fetal stages. We identify two distinct progenitor populations that coexist from the onset: reporter-positive cells give rise exclusively to primary myotubes, while reporter-negative cells generate secondary myotubes and satellite cells. We also reveal a previously unrecognized role for TCF-LEF/β-catenin signaling in spatially organizing the primary lineage via Cxcr4-mediated control of myoblast migration. These findings redefine the developmental origin of myogenic lineages, resolve a longstanding question in muscle biology, and provide a molecular framework for investigating how muscle fiber diversity emerges and how distinct lineages contribute to the functional specialization of skeletal muscle.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-61767-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61767-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-61767-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().