EconPapers    
Economics at your fingertips  
 

Light-induced fine-tuning of optical cavities for organic optoelectronic devices

Shen Xing (), Eva Bittrich, Vasiliki Prifti, Stephanie Buchholtz, Yuan Liu, Louis Conrad Winkler, Maximilian F. X. Dorfner, Mikhail Malanin, Mingchao Wang, Guoqin Liu, Dinara Samigullina, Anna-Lena Hofmann, Jakob Wolansky, Jörn Vahland, Tianyi Zhang, Rongjuan Huang, Samuel Dominic Seddon, Dieter Fischer, Sebastian Reineke, Frank Ortmann, Xinliang Feng, Hans Kleemann (), Johannes Benduhn () and Karl Leo ()
Additional contact information
Shen Xing: Technische Universität Dresden
Eva Bittrich: Division of Macromolecular Chemistry
Vasiliki Prifti: Technische Universität Dresden
Stephanie Buchholtz: Technische Universität Dresden
Yuan Liu: Beijing Information Science & Technology University
Louis Conrad Winkler: Technische Universität Dresden
Maximilian F. X. Dorfner: 85748 Garching b
Mikhail Malanin: Division of Macromolecular Chemistry
Mingchao Wang: Shenzhen Graduate School
Guoqin Liu: Technische Universität Dresden
Dinara Samigullina: Technische Universität Dresden
Anna-Lena Hofmann: Technische Universität Dresden
Jakob Wolansky: Technische Universität Dresden
Jörn Vahland: Technische Universität Dresden
Tianyi Zhang: Technische Universität Dresden
Rongjuan Huang: Technische Universität Dresden
Samuel Dominic Seddon: Technische Universität Dresden
Dieter Fischer: Division of Macromolecular Chemistry
Sebastian Reineke: Technische Universität Dresden
Frank Ortmann: 85748 Garching b
Xinliang Feng: Technische Universität Dresden
Hans Kleemann: Technische Universität Dresden
Johannes Benduhn: Technische Universität Dresden
Karl Leo: Technische Universität Dresden

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract Precise structural control is essential for high-performance semiconductors. In organic electronics, traditional methods for tuning the dimensions of device structures often rely on cumbersome, limited-resolution processes such as shadow mask patterning, printing, or viscosity tuning. Here, we report ultraviolet (UV) irradiation in ambient conditions as a transformative approach for tuning structural parameters of organic small molecule hole transport layers (HTLs) in vertical and lateral directions. The method preserves HTL conductivity while facilitating uniform thickness reduction through synergistic photo-induced oligomerization and photo-oxidative layer shrinking. Controlled thinning applies to various organic materials. In cavity architectures, UV-treated organic photodetectors show narrowband detection from 900 to 1200 nm with a full width at half maximum down to 25 nm, and UV-treated organic light-emitting diodes exhibit 75 nm peak tunability. Moreover, this strategy permits micrometer-scale lateral patterning of HTLs. Our work opens new opportunities for precise and practical engineering for organic electronic devices.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-64272-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64272-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-64272-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-09-27
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64272-7