Unveiling structural effects on the DC conductivity of warm dense matter via terahertz spectroscopy and ultrafast electron diffraction
Benjamin K. Ofori-Okai (),
Adrien Descamps,
Edna R. Toro,
Megan Ikeya,
Stephanie B. Hansen,
Mianzhen Mo,
Andrew D. Baczewski,
Danielle Brown,
Luke B. Fletcher,
Emma E. McBride,
Xiaozhe Shen,
Anthea Weinmann,
Jie Yang,
Jochen Schein,
Zhijiang Chen,
Xijie Wang and
Siegfried H. Glenzer ()
Additional contact information
Benjamin K. Ofori-Okai: SLAC National Accelerator Laboratory
Adrien Descamps: SLAC National Accelerator Laboratory
Edna R. Toro: SLAC National Accelerator Laboratory
Megan Ikeya: SLAC National Accelerator Laboratory
Stephanie B. Hansen: Sandia National Laboratories, Pulsed Power Sciences Center
Mianzhen Mo: SLAC National Accelerator Laboratory
Andrew D. Baczewski: Sandia National Laboratories, Center for Computing Research
Danielle Brown: SLAC National Accelerator Laboratory
Luke B. Fletcher: SLAC National Accelerator Laboratory
Emma E. McBride: SLAC National Accelerator Laboratory
Xiaozhe Shen: SLAC National Accelerator Laboratory
Anthea Weinmann: SLAC National Accelerator Laboratory
Jie Yang: SLAC National Accelerator Laboratory
Jochen Schein: Universität der Bundeswehr München
Zhijiang Chen: SLAC National Accelerator Laboratory
Xijie Wang: SLAC National Accelerator Laboratory
Siegfried H. Glenzer: SLAC National Accelerator Laboratory
Nature Communications, 2025, vol. 16, issue 1, 1-11
Abstract:
Abstract Understanding how materials under far-from-equilibrium conditions conduct electricity is vital for modeling planetary interiors, fusion energy, and other high-energy-density environments. Yet direct measurements of electrical conductivity in these states are challenging, as experiments must capture changes in both electronic conditions and atomic arrangement. Here we show, using laser-heated aluminum films, how the electrical conductivity of materials driven to the warm dense matter regime is influenced by temperature and structure. By directly measuring the electrical conductivity using terahertz time-domain spectroscopy and observing the atomic arrangement using mega-electron-volt ultrafast electron diffraction studies, we separate the impact of these different contributions on the observed sharp drop in the conductivity after laser heating. This approach is broadly applicable for measuring the electrical conductivity of matter laser heated to high-energy-density conditions. Our results are used to benchmark leading theoretical models and highlight the importance of accurately treating both electron and ion dynamics.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-65559-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65559-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-65559-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().