EconPapers    
Economics at your fingertips  
 

Monolithic electro-optic platform on silicon with bandwidth of 100 GHz and beyond

Daniel Steckler (), Stefan Lischke, Yuji Yamamoto, Wei-Chen Wen, Anna Peczek, Johannes Beyer, Aleksandra Kroh, Oksana Fursenko, Florian Bärwolf, Steffen Marschmeyer, Philipp Kulse, Dirk Wolansky and Lars Zimmermann
Additional contact information
Daniel Steckler: IHP—Leibniz-Institut für innovative Mikroelektronik
Stefan Lischke: IHP—Leibniz-Institut für innovative Mikroelektronik
Yuji Yamamoto: IHP—Leibniz-Institut für innovative Mikroelektronik
Wei-Chen Wen: IHP—Leibniz-Institut für innovative Mikroelektronik
Anna Peczek: IHP—Leibniz-Institut für innovative Mikroelektronik
Johannes Beyer: IHP—Leibniz-Institut für innovative Mikroelektronik
Aleksandra Kroh: IHP—Leibniz-Institut für innovative Mikroelektronik
Oksana Fursenko: IHP—Leibniz-Institut für innovative Mikroelektronik
Florian Bärwolf: IHP—Leibniz-Institut für innovative Mikroelektronik
Steffen Marschmeyer: IHP—Leibniz-Institut für innovative Mikroelektronik
Philipp Kulse: IHP—Leibniz-Institut für innovative Mikroelektronik
Dirk Wolansky: IHP—Leibniz-Institut für innovative Mikroelektronik
Lars Zimmermann: IHP—Leibniz-Institut für innovative Mikroelektronik

Nature Communications, 2025, vol. 16, issue 1, 1-10

Abstract: Abstract Extending electro-optic bandwidth of native silicon photonic devices well beyond 100 GHz remains a challenge. We demonstrate a scalable C-band silicon photonic platform monolithically integrating ultra-high speed germanium–silicon electro absorption modulators and fin photodiodes. We apply a delta-layer doping process to incorporate Si into Ge. Two electro-absorption modulator variants with lengths of 40 µm and 20 µm exhibit electro optic 3-dB bandwidths of 100 GHz and well beyond 110 GHz, respectively. Co-integrated GeSi-fin photodiodes achieve 3-dB bandwidths of more than 200 GHz. Involving only platform integrated absorption modulators and fin photodiodes, we demonstrate open-eyes in a large signal experiment at 140 Gbit/s. This work establishes an important milestone for next generation optical communication technology.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-66566-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66566-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-66566-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-66566-2