Anaerobic microsites have an unaccounted role in soil carbon stabilization
Marco Keiluweit,
Tom Wanzek,
Markus Kleber,
Peter Nico and
Scott Fendorf ()
Additional contact information
Marco Keiluweit: University of Massachusetts
Tom Wanzek: Oregon State University
Markus Kleber: Oregon State University
Peter Nico: Lawrence Berkeley National Laboratory
Scott Fendorf: Stanford University
Nature Communications, 2017, vol. 8, issue 1, 1-10
Abstract:
Abstract Soils represent the largest carbon reservoir within terrestrial ecosystems. The mechanisms controlling the amount of carbon stored and its feedback to the climate system, however, remain poorly resolved. Global carbon models assume that carbon cycling in upland soils is entirely driven by aerobic respiration; the impact of anaerobic microsites prevalent even within well-drained soils is missed within this conception. Here, we show that anaerobic microsites are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration, and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. The vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon–climate feedback that should be incorporated into terrestrial ecosystem models.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-017-01406-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01406-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-01406-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().