Uncover rigorous application range of phenomena measure method to avoid adding extra unverifiable things into reality for explaining measured discrepancy
Wei Guo
No xc4wr, OSF Preprints from Center for Open Science
Abstract:
Today, the scientific community comprehensively accepts adding many extra unverifiable things into reality, e.g. extra mass: dark matter, extra energy: dark energy, extra position: superposition, extra dimensions, or even extra parallel reality. Considering reality is not understood completely, adding something into reality's unknown part is indeed a shortcut for explaining some measured discrepancy, but such behaviors are likely to distort the instinct of reality. We report any inherent measured discrepancy involving an indirect measure method that relies on an artificially-defined equivalence, e.g. inertia mass indirectly measures mass by equating mass with force/acceleration. Time measure relies on an equivalence between time and some phenomena, e.g. swing of pendulum, fall of sands or electron jumping between two states. Since Galileo, mathematical equal sign is introduced so naturally between different physical properties. We argue any such equivalence only holds true within a limited phenomena range. Although some method's application range has been summarized, e.g. inertia mass only applies to 'macro, low-speed, inertia-system', we state such scattered descriptions collected from experience are not rigorous. We propose a general frame that can identify a more rigorous application range. Hence, any inherent measured discrepancy results from the measured phenomena exceeding the method's rigorous application range, e.g. remote objects actually exceed the Doppler effect's application range. By ignoring this, large-scale red shift inevitably misleads us to the dark energy's existing necessity. Similarly, dark matter only logically exists to expand the rigorous application range of dynamical mass.
Date: 2023-06-28
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://osf.io/download/649b8fb96513ba0c2e3a369a/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:osf:osfxxx:xc4wr
DOI: 10.31219/osf.io/xc4wr
Access Statistics for this paper
More papers in OSF Preprints from Center for Open Science
Bibliographic data for series maintained by OSF ().