EconPapers    
Economics at your fingertips  
 

Transformative Treatments

L.A. Paul and Kieran Healy

No 8hjf3, SocArXiv from Center for Open Science

Abstract: Contemporary social-scientific research seeks to identify specific causal mechanisms for outcomes of theoretical interest. Experiments that randomize populations to treatment and control conditions are the “gold standard” for causal inference. We identify, describe, and analyze the problem posed by *transformative treatments*. Such treatments radically change treated individuals in a way that creates a mismatch in populations, but this mismatch is not empirically detectable at the level of counterfactual dependence. In such cases, the identification of causal pathways is underdetermined in a previously unrecognized way. Moreover, if the treatment is indeed transformative it breaks the inferential structure of the experimental design. Transformative treatments are not curiosities or “corner cases”, but are plausible mechanisms in a large class of events of theoretical interest, particularly ones where deliberate randomization is impractical and quasi-experimental designs are sought instead. They cast long-running debates about treatment and selection effects in a new light, and raise new methodological challenges.

Date: 2016-12-13
References: Add references at CitEc
Citations:

Downloads: (external link)
https://osf.io/download/584fdedc9ad5a1004bba0e2f/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:osf:socarx:8hjf3

DOI: 10.31219/osf.io/8hjf3

Access Statistics for this paper

More papers in SocArXiv from Center for Open Science
Bibliographic data for series maintained by OSF ().

 
Page updated 2025-03-19
Handle: RePEc:osf:socarx:8hjf3