EconPapers    
Economics at your fingertips  
 

Modelo de previsão de Séries Temporais para previsão do preço das ações da Netflix

Thalita De Oliveira Santos and Thaylon Gomes da Silva

No mc5h2, SocArXiv from Center for Open Science

Abstract: O mercado de ações é uma parte importante de qualquer economia e, por isso, compreendê-lo é objetivo de vários estudos, pois permite que o investidor tome decisões mais firmes e certeiras. Entretanto, realizar previsões de séries financeiras é uma tarefa difícil, uma vez que são compostas de ruídos e apresentam um comportamento bastante errático. Este trabalho faz o uso dos modelos de média móvel integrada autorregressiva e do modelo de média móvel integrada autorregressiva sazonal, para prever o preço de abertura das ações da Netflix na bolsa de valores norte-americana NASDAQ. O Critério de Informação de Akaike foi usado para selecionar o melhor modelo, e o desempenho dos modelos foi analisado através do erro quadrático médio. Depois de selecionar o modelo mais preciso, realizou-se uma comparação das médias dos períodos antes e durante a pandemia. Os resultados obtidos revelam que o modelo ARIMA (0,1,1) foi o que conseguiu realizar previsões mais precisas, e que a pandemia teve um impacto positivo no preço das ações.

Date: 2022-07-15
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://osf.io/download/62d1503f588bb92168b86e6c/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:osf:socarx:mc5h2

DOI: 10.31219/osf.io/mc5h2

Access Statistics for this paper

More papers in SocArXiv from Center for Open Science
Bibliographic data for series maintained by OSF ().

 
Page updated 2025-03-19
Handle: RePEc:osf:socarx:mc5h2