The Text-Score Allocation Model: Finding Latent Topics of Online Review Documents and Multi-Item Ratings
Sotaro Katsumata () and
Seungjin Kim
Additional contact information
Sotaro Katsumata: Graduate School of Economics, Osaka University
Seungjin Kim: Graduate School of Economics, Osaka University
No 20-01, Discussion Papers in Economics and Business from Osaka University, Graduate School of Economics
Abstract:
This studyfocusesononlinereviewdatainwhichcommentsarewritteninnaturallanguages and evaluationsareattachedasintegers.Thisstudydevelopsatopicmodelincorporatingboth natural languagesandevaluationscores,expandinglatentDirichletallocation(LDA).Themodel consists oftwocomponents:LDAandaDirichlet-binomialclusteringmodel.Thelatterassumes binomial distributionsforthereviewscores.Sincethemodelassumesconjugatedistributions,we can applyafastandstableestimatorbasedoncollapsedGibbssamplingtoestimatetheparameters. Further,themodelenablesustoexaminetherelationshipbetweenvocabularywordsandreview scores basedonthetopicallocationresults.
Keywords: TopicModeling; CustomerReviews; Forecasting (search for similar items in EconPapers)
Pages: 36 pages
Date: 2020-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www2.econ.osaka-u.ac.jp/econ_society/dp/2001.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:osk:wpaper:2001
Access Statistics for this paper
More papers in Discussion Papers in Economics and Business from Osaka University, Graduate School of Economics Contact information at EDIRC.
Bibliographic data for series maintained by The Economic Society of Osaka University ().