EconPapers    
Economics at your fingertips  
 

Expected Shortfall Estimation and Gaussian Inference for Infinite Variance Time Series

Jonathan B. Hill

Journal of Financial Econometrics, 2015, vol. 13, issue 1, 1-44

Abstract: We develop methods of nonparametric estimation for the Expected Shortfall of possibly heavy tailed asset returns that leads to asymptotically standard inference. We use a tail-trimming indicator to dampen extremes negligibly, ensuring standard Gaussian inference, and a higher rate of convergence than without trimming when the variance is infinite. Trimming, however, causes bias in small samples and possibly asymptotically when the variance is infinite, so we exploit a rarely used remedy to estimate and utilize the tail mean that is removed by trimming. Since estimating the tail mean involves estimation of tail parameters and therefore an added arbitrary choice of the number of included extreme values, we present weak limit theory for an ES estimator that optimally selects the number of tail observations by making our estimator arbitrarily close to the untrimmed estimator, yet still asymptotically normal. Finally, we apply the new estimators to financial returns data.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbt020 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:13:y:2015:i:1:p:1-44.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:13:y:2015:i:1:p:1-44.