EconPapers    
Economics at your fingertips  
 

A New Test for Multiple Predictive Regression*

Ke-Li Xu and Junjie Guo

Journal of Financial Econometrics, 2024, vol. 22, issue 1, 119-156

Abstract: We consider inference for predictive regressions with multiple predictors. Extant tests for predictability (especially for joint predictability) may perform unsatisfactorily and tend to discover spurious predictability as the number of predictors increases. We propose a battery of new instrumental variables-based tests which involve enforcement or partial enforcement of the null hypothesis in variance estimation. A test based on the few-predictors-at-a-time parsimonious system approach is recommended. Empirical Monte Carlos demonstrates the remarkable finite-sample performance regardless of numerosity of predictors and their persistence properties. Empirical application to equity premium predictability is provided.

Keywords: curse of dimensionality; Lagrange-multipliers test; persistence; predictive regression; return predictability (search for similar items in EconPapers)
JEL-codes: C32 C53 C58 G17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbac030 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:22:y:2024:i:1:p:119-156.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:22:y:2024:i:1:p:119-156.