EconPapers    
Economics at your fingertips  
 

Estimation of an Order Book Dependent Hawkes Process for Large Datasets*

Luca Mucciante and Alessio Sancetta

Journal of Financial Econometrics, 2024, vol. 22, issue 4, 1098-1129

Abstract: A point process for event arrivals in high-frequency trading is presented. The intensity is the product of a Hawkes process and high-dimensional functions of covariates derived from the order book. Conditions for stationarity of the process are stated. An algorithm is presented to estimate the model even in the presence of billions of data points, possibly mapping covariates into a high-dimensional space. Large sample sizes can be common for high-frequency data applications using multiple instruments. Consistency results under weak conditions are established. A test statistic to assess out of sample performance of different model specifications is suggested. The methodology is applied to the study of four stocks that trade on the New York Stock Exchange. The out of sample testing procedure suggests that capturing the nonlinearity of the order book information adds value to the self-exciting nature of high-frequency trading events.

Keywords: counting process; forecast evaluation; high-frequency trading; high-dimensional estimation; one-hot encoding; trade arrival (search for similar items in EconPapers)
JEL-codes: C13 C32 C55 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbad021 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:22:y:2024:i:4:p:1098-1129.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:22:y:2024:i:4:p:1098-1129.