Bootstrap Inference for Group Factor Models
Sílvia Gonçalves,
Julia Koh and
Benoit Perron
Journal of Financial Econometrics, 2025, vol. 23, issue 2, 1267b-1305
Abstract:
Andreou et al. (2019) have proposed a test for common factors based on canonical correlations between factors estimated separately from each group. We propose a simple bootstrap test that avoids the need to estimate the bias and variance of the canonical correlations explicitly and provide high-level conditions for its validity. We verify these conditions for a wild bootstrap scheme similar to the one proposed in Gonçalves and Perron (2014). Simulation experiments show that this bootstrap approach leads to null rejection rates closer to the nominal level in all of our designs compared to the asymptotic framework.
Keywords: bootstrap; factor model; canonical correlations (search for similar items in EconPapers)
JEL-codes: C12 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbae020 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:23:y:2025:i:2:p:1267b-1305.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().