Efficient Estimation in Extreme Value Regression Models of Hedge Funds Tail risks
Julien Hambuckers,
Marie Kratz and
Antoine Usseglio-Carleve
Journal of Financial Econometrics, 2025, vol. 23, issue 5, nbaf018.
Abstract:
Extreme value regression offers a convenient framework to assess the effect of market variables on hedge funds tail risks, proxied by the tail index of the cross-section of hedge funds returns. However, its major limitation lies in the need to select a threshold below which data are discarded, leading to significant estimation inefficiencies. In this article, our main contribution consists in introducing a method to estimate simultaneously the tail index and the threshold parameter from the entire sample at hand, improving estimation efficiency. To do so, we extend the tail regression model to non-tail observations with an auxiliary splicing density, enabling the threshold to be internally determined without truncating the data. We then apply an artificial censoring mechanism to decrease specification issues at the estimation stage. Empirically, we investigate the determinants of hedge funds tail risks over time, and find a significant link with funding liquidity indicators. We also find that our tail risk measure has a significant predictive ability for the returns of around 25% of the funds. In addition, sorting funds along a tail risk sensitivity measure, we are able to discriminate between high- and low-alpha funds under some asset pricing models.
Keywords: extreme value theory; generalized Pareto regression; censored maximum likelihood (search for similar items in EconPapers)
JEL-codes: C13 C46 G23 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbaf018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:23:y:2025:i:5:p:nbaf018.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().