Sparse-Patterned Wavelet Neural Networks and Their Applications to Stock Market Forecasting
Jack Penm and
R. D. Terrell
Chapter 8 in Nonlinear Financial Econometrics: Markov Switching Models, Persistence and Nonlinear Cointegration, 2011, pp 161-170 from Palgrave Macmillan
Abstract:
Abstract A new approach adopted in this chapter is to apply sparse-patterned wavelet neural networks to simulate emerging stock market price movements. The approach is based on wavelet analysis, which is a relatively new and quite powerful mathematical tool for non-linear financial econometrics. Like conventional Fourier time series analysis, it involves the projection of a time-series onto an orthogonal set of components: in the case of Fourier analysis sine and cosine functions; and in the case of wavelet analysis wavelets. A critical difference is that wavelet analysis exhibits the characteristics of the local behavior of the function, whereas Fourier analysis presents the characteristics of the global behavior of the function. Compared to Fourier analysis, wavelet analysis offers several advantages. Fourier analysis decomposes a given function into sinusoidal waves of different frequencies and amplitudes. This is an effective approach when the given function is stationary. However, when the characteristics at each frequency change over time or there are singularities, Fourier analysis will give us the average of the changing frequencies over the whole function, whereas wavelet analysis can tell us how a given function changes from one time period to the next. It does this by matching a wavelet function, of varying scales and positions, to that function.
Keywords: Root Mean Square Error; Stock Market; Wavelet Analysis; Continuous Wavelet Transform; Future Contract (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palchp:978-0-230-29521-6_8
Ordering information: This item can be ordered from
http://www.palgrave.com/9780230295216
DOI: 10.1057/9780230295216_8
Access Statistics for this chapter
More chapters in Palgrave Macmillan Books from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().