Efficiency of Alternative Estimators in Generalized Seemingly Unrelated Regression Models
Robert Bartels and
Denzil Fiebig
Chapter 7 in Contributions to Consumer Demand and Econometrics, 1992, pp 125-139 from Palgrave Macmillan
Abstract:
Abstract Joint estimation of the parameters of systems of multiple equations by Zellner’s (1962) method of seemingly unrelated regressions (SUR) will in general lead to efficiency gains relative to single equation estimation. The original work of Zellner (1962, 1963) and Zellner and Huang (1962) investigated the magnitude of these efficiency gains. In particular they showed that there is no gain if either the explanatory variables are the same in each equation or if the error covariances are all zero. Further characterizations and extensions of these results have appeared in the work of Schmidt (1978), Dwivedi and Srivastava (1978), Theil and Fiebig (1979) and Kapteyn and Fiebig (1981). In summary, the conventional wisdom, as represented by say Judge et al. (1985, p. 468), is that: ‘efficiency gains from joint estimation tend to be higher when the explanatory variables in different equations are not highly correlated but the disturbance terms corresponding to different equations are highly correlated’.
Keywords: Efficiency Gain; Western Australia; Northern Territory; Joint Estimation; Seemingly Unrelated Regression (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palchp:978-1-349-12221-9_7
Ordering information: This item can be ordered from
http://www.palgrave.com/9781349122219
DOI: 10.1007/978-1-349-12221-9_7
Access Statistics for this chapter
More chapters in Palgrave Macmillan Books from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().