Examining spread of emotional political content among Democratic and Republican candidates during the 2018 US mid-term elections
Meng-Jie Wang (),
Kumar Yogeeswaran,
Sivanand Sivaram and
Kyle Nash
Additional contact information
Meng-Jie Wang: University of Canterbury
Kumar Yogeeswaran: University of Canterbury
Sivanand Sivaram: Phocas Software
Kyle Nash: University of Alberta
Palgrave Communications, 2021, vol. 8, issue 1, 1-12
Abstract:
Abstract Previous research investigating the transmission of political messaging has primarily taken a valence-based approach leaving it unclear how specific emotions influence the spread of candidates’ messages, particularly in a social media context. Moreover, such work does not examine if any differences exist across major political parties (i.e., Democrats vs. Republicans) in their responses to each type of emotional content. Leveraging more than 7000 original messages published by Senate candidates on Twitter leading up to the 2018 US mid-term elections, the present study utilizes an advanced natural language tool (i.e., IBM Tone Analyzer) to examine how candidates’ multidimensional discrete emotions (i.e., joy, anger, fear, sadness, and confidence) displayed in a given tweet—might be more likely to garner the public’s attention online. While the results indicate that positive joy-signaling tweets are less likely to be retweeted or favorited on both sides of the political spectrum, the presence of anger- and fear-signaling tweets were significantly associated with increased diffusion among Republican and Democrat networks, respectively. Neither expressions of confidence nor sadness had an impact on retweet or favorite counts. Given the ubiquity of social media in contemporary politics, here we provide a starting point from which to disentangle the role of specific emotions in the proliferation of political messages, shedding light on the ways in which political candidates gain potential exposure throughout the election cycle.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-021-00987-4 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00987-4
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-021-00987-4
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().