EconPapers    
Economics at your fingertips  
 

Indicadores líderes, redes neuronales y predicción de corto plazo

Javier Kapsoli Salinas () and Brigitt Bencich Aguilar
Additional contact information
Javier Kapsoli Salinas: Departamento de Economía- Pontificia Universidad Católica del Perú

No 2002-213, Documentos de Trabajo / Working Papers from Departamento de Economía - Pontificia Universidad Católica del Perú

Abstract: This paper shows a procedure to construct a short run predictor for the GDP. We use the Baxter & King filter to decompose the monthly GDP on its three components: seasonal, business cycle and long-run trend. Furthermore we estimate and forecast the business cycle using a set of leading economic variables. We propose that the complicated relationships among this variables and the business cycle are well captured by a non linear artificial neural network model. The other components are estimated using standard econometric techniques. Finally, the three components are added to obtain an indicator for the future behavior of the GDP. The prediction shows an acceptable level of reliability, so the index can be used to take decisions in the private or public sector. The main advantage of the index is its faster availability relative to the official statistics.

Pages: 54 pages
Date: 2002
References: Add references at CitEc
Citations:

Published

Downloads: (external link)
http://files.pucp.edu.pe/departamento/economia/DDD213.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pcp:pucwps:wp00213

Access Statistics for this paper

More papers in Documentos de Trabajo / Working Papers from Departamento de Economía - Pontificia Universidad Católica del Perú Av. Universitaria 1801, San Miguel, Lima, Perú. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-04-18
Handle: RePEc:pcp:pucwps:wp00213