EconPapers    
Economics at your fingertips  
 

Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan

Tomasz Korol and Anestis K. Fotiadis
Additional contact information
Tomasz Korol: Gdañsk University of Technology, Poland
Anestis K. Fotiadis: Zayed University, United Arab Emirates

Oeconomia Copernicana, 2022, vol. 13, issue 2, 407-438

Abstract: Research background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the private person is unable to maintain a habitual standard of living. This means that anyone can become financially vulnerable regardless of wealth or education level. Therefore, forecasting consumer bankruptcy risk has received increasing scientific and public attention. Purpose of the article: This study proposes artificial intelligence solutions to address the increased importance of the personal bankruptcy phenomenon and the growing need for reliable forecasting models. The objective of this paper is to develop six models for forecasting personal bankruptcies in Poland and Taiwan with the use of three soft-computing techniques. Methods: Six models were developed to forecast the risk of insolvency: three for Polish households and three for Taiwanese consumers, using fuzzy sets, genetic algorithms, and artificial neural networks. This research relied on four samples. Two were learning samples (one for each country), and two were testing samples, also one for each country separately. Both testing samples contain 500 bankrupt and 500 nonbankrupt households, while each learning sample consists of 100 insolvent and 100 solvent natural persons. Findings & value added: This study presents a solution for effective bankruptcy risk forecasting by implementing both highly effective and usable methods and proposes a new type of ratios that combine the evaluated consumers’ financial and demographic characteristics. The usage of such ratios also improves the versatility of the presented models, as they are not denominated in monetary value or strictly in demographic units. This would be limited to use in only one country but can be widely used in other regions of the world.

Keywords: fuzzy logic; genetic algorithms; artificial neural networks; consumer bankruptcy; the financial crisis of households (search for similar items in EconPapers)
JEL-codes: G17 G51 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://dx.doi.org/10.24136/oc.2022.013 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pes:ieroec:v:13:y:2022:i:2:p:407-438

Access Statistics for this article

Oeconomia Copernicana is currently edited by Adam P. Balcerzak and Michal Moszynski

More articles in Oeconomia Copernicana from Institute of Economic Research Contact information at EDIRC.
Bibliographic data for series maintained by Adam P. Balcerzak ( this e-mail address is bad, please contact ).

 
Page updated 2025-03-19
Handle: RePEc:pes:ieroec:v:13:y:2022:i:2:p:407-438