EconPapers    
Economics at your fingertips  
 

Where to Go: Breaking the Symmetry in Cell Motility

Sui Huang

PLOS Biology, 2016, vol. 14, issue 5, 1-10

Abstract: Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology.Directional cell motility is enabled by chemoattractant gradient and symmetry-breaking. This Primer argues that the recent observation of cells generating a gradient in a uniformly distributed nutrient reveals the multilayered nature of symmetry-breaking in cell locomotion.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002463 (text/html)
https://journals.plos.org/plosbiology/article/file ... 02463&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:1002463

DOI: 10.1371/journal.pbio.1002463

Access Statistics for this article

More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pbio00:1002463