EconPapers    
Economics at your fingertips  
 

Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance

Jeff Maltas and Kevin B Wood

PLOS Biology, 2019, vol. 17, issue 10, 1-34

Abstract: Evolved resistance to one antibiotic may be associated with "collateral" sensitivity to other drugs. Here, we provide an extensive quantitative characterization of collateral effects in Enterococcus faecalis, a gram-positive opportunistic pathogen. By combining parallel experimental evolution with high-throughput dose-response measurements, we measure phenotypic profiles of collateral sensitivity and resistance for a total of 900 mutant–drug combinations. We find that collateral effects are pervasive but difficult to predict because independent populations selected by the same drug can exhibit qualitatively different profiles of collateral sensitivity as well as markedly different fitness costs. Using whole-genome sequencing of evolved populations, we identified mutations in a number of known resistance determinants, including mutations in several genes previously linked with collateral sensitivity in other species. Although phenotypic drug sensitivity profiles show significant diversity, they cluster into statistically similar groups characterized by selecting drugs with similar mechanisms. To exploit the statistical structure in these resistance profiles, we develop a simple mathematical model based on a stochastic control process and use it to design optimal drug policies that assign a unique drug to every possible resistance profile. Stochastic simulations reveal that these optimal drug policies outperform intuitive cycling protocols by maintaining long-term sensitivity at the expense of short-term periods of high resistance. The approach reveals a new conceptual strategy for mitigating resistance by balancing short-term inhibition of pathogen growth with infrequent use of drugs intended to steer pathogen populations to a more vulnerable future state. Experiments in laboratory populations confirm that model-inspired sequences of four drugs reduce growth and slow adaptation relative to naive protocols involving the drugs alone, in pairwise cycles, or in a four-drug uniform cycle.An experimental evolution study in bacteria offers a new approach to slowing antibiotic resistance by exploiting correlations that occur between evolved resistance levels to currently available drugs. The study reveals a new strategy that balances short-term inhibition of growth with infrequent use of antibiotics intended to steer pathogen populations to a more vulnerable future state.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000515 (text/html)
https://journals.plos.org/plosbiology/article/file ... 00515&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pbio00:3000515

DOI: 10.1371/journal.pbio.3000515

Access Statistics for this article

More articles in PLOS Biology from Public Library of Science
Bibliographic data for series maintained by plosbiology ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pbio00:3000515