A Hierarchy of Time-Scales and the Brain
Stefan J Kiebel,
Jean Daunizeau and
Karl J Friston
PLOS Computational Biology, 2008, vol. 4, issue 11, 1-12
Abstract:
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure–function relationships, which can be tested by manipulating the time-scales of sensory input. Author Summary: Currently, there is no theory that explains how the large-scale organization of the human brain can be related to our environment. This is astonishing because neuroscientists generally assume that the brain represents events in our environment by decoding sensory input. Here, we propose that the brain models the entire environment as a collection of hierarchical, dynamical systems, where slower environmental changes provide the context for faster changes. We suggest that there is a simple mapping between this temporal hierarchy and the anatomical hierarchy of the brain. Our theory provides a framework for explaining a wide range of neuroscientific findings by a single principle.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000209 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00209&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000209
DOI: 10.1371/journal.pcbi.1000209
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().