How to Get the Most out of Your Curation Effort
Andrey Rzhetsky,
Hagit Shatkay and
W John Wilbur
PLOS Computational Biology, 2009, vol. 5, issue 5, 1-13
Abstract:
Large-scale annotation efforts typically involve several experts who may disagree with each other. We propose an approach for modeling disagreements among experts that allows providing each annotation with a confidence value (i.e., the posterior probability that it is correct). Our approach allows computing certainty-level for individual annotations, given annotator-specific parameters estimated from data. We developed two probabilistic models for performing this analysis, compared these models using computer simulation, and tested each model's actual performance, based on a large data set generated by human annotators specifically for this study. We show that even in the worst-case scenario, when all annotators disagree, our approach allows us to significantly increase the probability of choosing the correct annotation. Along with this publication we make publicly available a corpus of 10,000 sentences annotated according to several cardinal dimensions that we have introduced in earlier work. The 10,000 sentences were all 3-fold annotated by a group of eight experts, while a 1,000-sentence subset was further 5-fold annotated by five new experts. While the presented data represent a specialized curation task, our modeling approach is general; most data annotation studies could benefit from our methodology.Author Summary: Data annotation (manual data curation) tasks are at the very heart of modern biology. Experts performing curation obviously differ in their efficiency, attitude, and precision, but directly measuring their performance is not easy. We propose an experimental design schema and associated mathematical models with which to estimate annotator-specific correctness in large multi-annotator efforts. With these, we can compute confidence in every annotation, facilitating the effective use of all annotated data, even when annotations are conflicting. Our approach retains all annotations with computed confidence values, and provides more comprehensive training data for machine learning algorithms than approaches where only perfect-agreement annotations are used. We provide results of independent testing that demonstrate that our methodology works. We believe these models can be applied to and improve upon a wide variety of annotation tasks that involve multiple annotators.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000391 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00391&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000391
DOI: 10.1371/journal.pcbi.1000391
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().