Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases
Kai Wang,
Manikandan Narayanan,
Hua Zhong,
Martin Tompa,
Eric E Schadt and
Jun Zhu
PLOS Computational Biology, 2009, vol. 5, issue 12, 1-16
Abstract:
Co-expression networks are routinely used to study human diseases like obesity and diabetes. Systematic comparison of these networks between species has the potential to elucidate common mechanisms that are conserved between human and rodent species, as well as those that are species-specific characterizing evolutionary plasticity. We developed a semi-parametric meta-analysis approach for combining gene-gene co-expression relationships across expression profile datasets from multiple species. The simulation results showed that the semi-parametric method is robust against noise. When applied to human, mouse, and rat liver co-expression networks, our method out-performed existing methods in identifying gene pairs with coherent biological functions. We identified a network conserved across species that highlighted cell-cell signaling, cell-adhesion and sterol biosynthesis as main biological processes represented in genome-wide association study candidate gene sets for blood lipid levels. We further developed a heterogeneity statistic to test for network differences among multiple datasets, and demonstrated that genes with species-specific interactions tend to be under positive selection throughout evolution. Finally, we identified a human-specific sub-network regulated by RXRG, which has been validated to play a different role in hyperlipidemia and Type 2 diabetes between human and mouse. Taken together, our approach represents a novel step forward in integrating gene co-expression networks from multiple large scale datasets to leverage not only common information but also differences that are dataset-specific.Author Summary: Two important aspects of drug development are drug target identification and biomarker discovery for early disease detection, disease progression, drug efficacy and drug toxicity, etc. Recently, many single nucleotide polymorphisms (SNPs) associated with human diseases are discovered through large genome-wide association studies (GWAS). However, it is still largely unclear how these candidate SNPs may cause human diseases. The ultimate aim of this paper is to put these GWAS candidate SNPs and their associated genes into a network context to understand their mechanism of action in human diseases. In addition to large-scale human data sets that are often heterogeneous in terms of genetic and environmental factors, many high quality data sets in rodents exist and are frequently used to model human diseases. To leverage such information, we developed a method for combining and contrasting gene networks between human and rodents, specifically to elucidate how GWAS candidate SNPs may contribute to human diseases. By identifying mechanisms that are conserved or divergent between human and rodents, we can also predict which disease causal genes can be studied using rodent models and which ones may not.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000616 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 00616&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1000616
DOI: 10.1371/journal.pcbi.1000616
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().