Effect of 1918 PB1-F2 Expression on Influenza A Virus Infection Kinetics
Amber M Smith,
Frederick R Adler,
Julie L McAuley,
Ryan N Gutenkunst,
Ruy M Ribeiro,
Jonathan A McCullers and
Alan S Perelson
PLOS Computational Biology, 2011, vol. 7, issue 2, 1-12
Abstract:
Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background, PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values. The model supports a higher viral production rate per cell and a higher infected cell death rate with the PR8-PB1-F2(1918) virus. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PB1-F2 on the possibility of a pandemic and on the importance of antiviral treatments.Author Summary: Influenza A virus is a respiratory pathogen that causes significant morbidity and mortality in infected individuals, particularly during pandemics like the 1918–1919 Spanish Flu pandemic. Recent data suggests that the influenza virus PB1-F2 protein contributes to disease severity. Here, we use data from infected mice together with quantitative analyses to understand how the PB1-F2 protein from the 1918–1919 pandemic strain influences viral kinetics. We find that the rates of virus growth and decay are increased when the 1918 PB1-F2 is present. Our analyses suggest that infection with an influenza virus possessing the 1918 PB1-F2 protein results in a higher rate of viral production from infected cells and a higher rate of infected cell death. These results provide new insights into the mechanisms of PB1-F2 and the virulence and pathogenesis of pandemic strains of influenza.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001081 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01081&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001081
DOI: 10.1371/journal.pcbi.1001081
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().