EconPapers    
Economics at your fingertips  
 

Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations

Chikako Ragan, Michael Zuker and Mark A Ragan

PLOS Computational Biology, 2011, vol. 7, issue 2, 1-11

Abstract: MicroRNAs (miRNAs) suppress gene expression by forming a duplex with a target messenger RNA (mRNA), blocking translation or initiating cleavage. Computational approaches have proven valuable for predicting which mRNAs can be targeted by a given miRNA, but currently available prediction methods do not address the extent of duplex formation under physiological conditions. Some miRNAs can at low concentrations bind to target mRNAs, whereas others are unlikely to bind within a physiologically relevant concentration range. Here we present a novel approach in which we find potential target sites on mRNA that minimize the calculated free energy of duplex formation, compute the free energy change involved in unfolding these sites, and use these energies to estimate the extent of duplex formation at specified initial concentrations of both species. We compare our predictions to experimentally confirmed miRNA-mRNA interactions (and non-interactions) in Drosophila melanogaster and in human. Although our method does not predict whether the targeted mRNA is degraded and/or its translation to protein inhibited, our quantitative estimates generally track experimentally supported results, indicating that this approach can be used to predict whether an interaction occurs at specified concentrations. Our approach offers a more-quantitative understanding of post-translational regulation in different cell types, tissues, and developmental conditions.Author Summary: MicroRNAs (miRNAs) are small RNA molecules that regulate post-transcriptional gene expression by binding messenger RNAs (mRNAs), blocking their role in translation or marking them for degradation. To date, computational methods for predicting mRNA targets have assumed an all-or-nothing mode of miRNA-mRNA interaction. Here we introduce a computational approach that predicts the degree of interaction, taking into account initial miRNA and mRNA concentrations. Using this approach, we can predict whether specified interactions are likely to be functionally relevant within physiologically relevant concentration ranges.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001090 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 01090&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1001090

DOI: 10.1371/journal.pcbi.1001090

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1001090