EconPapers    
Economics at your fingertips  
 

Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations

Lars Skjaerven, Barry Grant, Arturo Muga, Knut Teigen, J Andrew McCammon, Nathalie Reuter and Aurora Martinez

PLOS Computational Biology, 2011, vol. 7, issue 3, 1-14

Abstract: GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. Author Summary: Molecular machines convert chemical energy to mechanical work in the process of carrying out their specific tasks. Often these proteins are fueled by ATP binding and hydrolysis, enabling switching between different conformations. The ATP-dependent chaperone GroEL is a molecular machine that opens and closes its barrel-like structure in order to provide a folding cage for unfolded proteins. The quest to fully understand and control GroEL and other molecular machines is enhanced by complementing experimental work with computational approaches. Here, we provide a description of the molecular basis for the conformational changes in the GroEL subunit by performing extensive molecular dynamics simulations. The simulations sample the conformational population for the different nucleotide-free and bound states in the isolated subunit. The results reveal that the conformations of the subunit when isolated resemble those of the subunit integrated in the GroEL complex. Moreover, the molecular dynamics simulations allow following detailed changes in individual interatomic interactions brought about by ATP-binding.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002004 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02004&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002004

DOI: 10.1371/journal.pcbi.1002004

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002004