EconPapers    
Economics at your fingertips  
 

Speed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes

Mehdi Keramati, Amir Dezfouli and Payam Piray

PLOS Computational Biology, 2011, vol. 7, issue 5, 1-21

Abstract: Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time. Author Summary: When confronted with different alternatives, animals can respond either based on their pre-established habits, or by considering the short- and long-term consequences of each option. Whereas habitual decision making is fast, goal-directed thinking is a time-consuming task. Instead, habits are inflexible after being consolidated, but goal-directed decision making can rapidly adapt the animal's strategy after a change in environmental conditions. Based on these features of the two decision making systems, we suggest a computational model using the reinforcement learning framework, that makes a balance between the speed of decision making and behavioural flexibility. The behaviour of the model is consistent with the observation that at the early stages of learning, animals behave in a goal-directed way (flexible, but slow), but after extensive learning, their responses become habitual (inflexible, but fast). Moreover, the model explains that the animal's reaction time must decrease through the course of learning, as the habitual system takes control over behaviour. The model also attributes a functional role to the tonic activity of dopamine neurons in balancing the competition between the habitual and the goal-directed systems.

Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002055 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02055&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002055

DOI: 10.1371/journal.pcbi.1002055

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002055