Changes of Mind in an Attractor Network of Decision-Making
Larissa Albantakis and
Gustavo Deco
PLOS Computational Biology, 2011, vol. 7, issue 6, 1-13
Abstract:
Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models. Author Summary: A recent psychophysical experiment showed that participants do adjust their decisions (change their mind) based on further evidence, which was processed only after the first decision was made. The established notion of (perceptual) decision-making as a decision variable evolving in time until a termination criterion is reached does not incorporate these changes of mind. In the biophysically-realistic attractor model, the mean firing rates of neural populations encoding the decision alternatives act as the decision variable. In line with neurophysiological evidence from decision-related neurons in the lateral intraparietal cortex, a decision is made if a fixed firing rate threshold is crossed. We propose here that a change of mind is induced if this decision threshold is crossed a second time, namely by the neural population encoding the initially losing alternative, which thus overtakes the population that first crossed the decision threshold. Interestingly, we found this more likely to happen the further the system is pushed towards a regime where decision-making is no longer unambiguous, but both neural populations can fire at elevated rates. This, besides, corresponds to higher incoming activity and thus faster and less accurate decisions and suggests that the brain operates over the whole range of inputs enabling decision-making.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002086 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02086&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002086
DOI: 10.1371/journal.pcbi.1002086
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().