Optimal Stimulus Shapes for Neuronal Excitation
Daniel B Forger,
David Paydarfar and
John R Clay
PLOS Computational Biology, 2011, vol. 7, issue 7, 1-9
Abstract:
An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1) spike generation in a neuron can be highly discriminatory for stimulus shape and 2) the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks. Author Summary: Computational neuroscience seeks to understand the mechanisms by which signals excite a neuron or a neuronal network. An important consideration in these studies is optimality, i.e., what signal most effectively causes excitation. Optimization of neuronal signaling is important for networks that need to minimize energy costs, for sensory neurons to selectively respond to specific stimulus features, and for therapeutic deep brain stimulators to maximize battery life. Here we show in a classic mathematical model of the action potential and in experiments on a single cell preparation that: 1) a single neuron can be highly discriminatory for the shape of low amplitude stimuli that elicit an action potential and 2) the shape of the optimal stimulus depends upon the overall state of inputs to the neuron. Our findings reveal a surprising complexity of computation at the single cell level that may be important for understanding physiological function of the nervous system.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002089 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02089&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002089
DOI: 10.1371/journal.pcbi.1002089
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().