Prediction of Cell Penetrating Peptides by Support Vector Machines
William S Sanders,
C Ian Johnston,
Susan M Bridges,
Shane C Burgess and
Kenneth O Willeford
PLOS Computational Biology, 2011, vol. 7, issue 7, 1-12
Abstract:
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating. Author Summary: Cell penetrating peptides (CPPs) are peptides that can potentially transport other functional molecules across cellular membranes and therefore serve a role as drug delivery vehicles. The properties of a given peptide that make it cell penetrating are unclear, and the rapid screening of potential CPPs aids researchers by allowing focus on those peptides most likely to be utilized in a therapeutic capacity. This paper shows that basic features representing primary biochemical properties of these peptides can be used to train a classifier that can accurately predict cell penetrating potential of peptides and provide insight into the biochemical properties associated with cell penetration.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002101 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02101&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002101
DOI: 10.1371/journal.pcbi.1002101
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().