Effective Stimuli for Constructing Reliable Neuron Models
Shaul Druckmann,
Thomas K Berger,
Felix Schürmann,
Sean Hill,
Henry Markram and
Idan Segev
PLOS Computational Biology, 2011, vol. 7, issue 8, 1-13
Abstract:
The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose. Author Summary: Neurons perform complicated non-linear transformations on their input before producing their output - a train of action potentials. This input-output transformation is shaped by the specific composition of ion channels, out of the many possible types, that are embedded in the neuron's membrane. Experimentally, characterizing this transformation relies on injecting different stimuli to the neuron while recording its output; but which of the many possible stimuli should one apply? This combined experimental and theoretical study provides a general theoretical framework for answering this question, examining how different stimuli constrain the space of faithful conductance-based models of the studied neuron. We show that combinations of intracellular step and ramp currents enable the construction of models that both replicate the cell's response and generalize very well to novel stimuli e.g., to “noisy” stimuli mimicking synaptic activity. We experimentally verified our theoretical predictions on several cortical neuron types. This work presents a novel method for reliably linking the microscopic membrane ion channels to the macroscopic electrical behavior of neurons. It provides a much-needed rationale for selecting a particular stimulus set for studying the input-output properties of neurons and paves the way for standardization of experimental protocols along with construction of reliable neuron models.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002133 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02133&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002133
DOI: 10.1371/journal.pcbi.1002133
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().