Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Adi Shklarsh,
Gil Ariel,
Elad Schneidman and
Eshel Ben-Jacob
PLOS Computational Biology, 2011, vol. 7, issue 9, 1-11
Abstract:
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. Author Summary: Many groups of organisms, from colonies of bacteria and social insects through schools of fish and flocks of birds to herds of mammals exhibit advanced collective navigation. Identifying the minimal features of biologically-inspired interacting agents that can lead to emergence of “intelligent” like collective navigation and decision making is fundamental to our understanding of collective behavior, and is of great interest in artificial intelligence and robotics. Previous models of collective behavior of agents, which relied on static interactions of repulsion, orientation (alignment), and attraction, have shown the emergence of collective swarming. Here we show the advantage of performance adaptable interactions for navigation of groups in complex terrains. Each agent senses the local environment and is then allowed to adjust its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction and vice versa. We found that inclusion of such adaptable interactions dramatically improves the collective swarming performance leading to highly efficient navigation especially in very complex terrains.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002177 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02177&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002177
DOI: 10.1371/journal.pcbi.1002177
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().