Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
Lars Buesing,
Johannes Bill,
Bernhard Nessler and
Wolfgang Maass
PLOS Computational Biology, 2011, vol. 7, issue 11, 1-22
Abstract:
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. Author Summary: It is well-known that neurons communicate with short electric pulses, called action potentials or spikes. But how can spiking networks implement complex computations? Attempts to relate spiking network activity to results of deterministic computation steps, like the output bits of a processor in a digital computer, are conflicting with findings from cognitive science and neuroscience, the latter indicating the neural spike output in identical experiments changes from trial to trial, i.e., neurons are “unreliable”. Therefore, it has been recently proposed that neural activity should rather be regarded as samples from an underlying probability distribution over many variables which, e.g., represent a model of the external world incorporating prior knowledge, memories as well as sensory input. This hypothesis assumes that networks of stochastically spiking neurons are able to emulate powerful algorithms for reasoning in the face of uncertainty, i.e., to carry out probabilistic inference. In this work we propose a detailed neural network model that indeed fulfills these computational requirements and we relate the spiking dynamics of the network to concrete probabilistic computations. Our model suggests that neural systems are suitable to carry out probabilistic inference by using stochastic, rather than deterministic, computing elements.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002211 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02211&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002211
DOI: 10.1371/journal.pcbi.1002211
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().