EconPapers    
Economics at your fingertips  
 

Unbiased Simulations Reveal the Inward-Facing Conformation of the Human Serotonin Transporter and Na+ Ion Release

Heidi Koldsø, Pernille Noer, Julie Grouleff, Henriette Elisabeth Autzen, Steffen Sinning and Birgit Schiøtt

PLOS Computational Biology, 2011, vol. 7, issue 10, 1-14

Abstract: Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport. Author Summary: The human serotonin transporter belongs to the family of neurotransmitter transporters, which are located in the presynaptic nerve end, from where it is responsible for termination of synaptic serotonin signaling. Imbalance in serotonin concentration is related to various neuronal conditions such as depression, regulation of appetite etc. Very limited structural information of hSERT is available, but it is believed that the protein functions through an alternating access mechanism, where the central binding site is either exposed to the outside or the inside of the cell. We have previously published an experimentally validated outward-occluded homology model of hSERT, and here we reveal the inward-facing conformation of hSERT from molecular dynamics simulations, from which we can identify the main movements occurring during the translocation. From the inward-facing conformation we observe ion release, revealing important information on the sequence of events during transport. Following transport of the sodium ion, the substrate also shows early events of transport. The ion follows a cytoplasmic pathway as hinted at from experiments, and the ligand binding site becomes fully solvated by water through this same pathway. Experiments using an Asp437Asn mutant of hSERT confirm the prediction that Asp437 is a central residue in controlling ion transport.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002246 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02246&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002246

DOI: 10.1371/journal.pcbi.1002246

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002246