EconPapers    
Economics at your fingertips  
 

Trade-Offs and Constraints in Allosteric Sensing

Bruno MC Martins and Peter S Swain

PLOS Computational Biology, 2011, vol. 7, issue 11, 1-13

Abstract: Sensing extracellular changes initiates signal transduction and is the first stage of cellular decision-making. Yet relatively little is known about why one form of sensing biochemistry has been selected over another. To gain insight into this question, we studied the sensing characteristics of one of the biochemically simplest of sensors: the allosteric transcription factor. Such proteins, common in microbes, directly transduce the detection of a sensed molecule to changes in gene regulation. Using the Monod-Wyman-Changeux model, we determined six sensing characteristics – the dynamic range, the Hill number, the intrinsic noise, the information transfer capacity, the static gain, and the mean response time – as a function of the biochemical parameters of individual sensors and of the number of sensors. We found that specifying one characteristic strongly constrains others. For example, a high dynamic range implies a high Hill number and a high capacity, and vice versa. Perhaps surprisingly, these constraints are so strong that most of the space of characteristics is inaccessible given biophysically plausible ranges of parameter values. Within our approximations, we can calculate the probability distribution of the numbers of input molecules that maximizes information transfer and show that a population of one hundred allosteric transcription factors can in principle distinguish between more than four bands of input concentrations. Our results imply that allosteric sensors are unlikely to have been selected for high performance in one sensing characteristic but for a compromise in the performance of many. Author Summary: Sensing environmental changes is the first step in the process of cellular decision-making, but many different biochemical sensors exist and why one sensor is selected for a particular task over another is not known. Here we study the sensing properties of a simple and generic allosteric sensor to understand the effectiveness and limitations of its “design”. We begin by defining and calculating a set of six engineering-inspired characteristics of the sensor’s response and investigate how specifying a high performance in one characteristic constrains the sensor’s performance in others. We determine many such trade-offs and, perhaps surprisingly, that much of the space of characteristics is inaccessible given biophysically plausible ranges of parameters. Our results suggest that allosteric sensors are not under selection for high performance in one sensing characteristic but for a compromise in performance between many. Our approach provides both quantitative and qualitative insights about the function and robustness of allosteric sensors and as such is applicable to both the study of endogenous systems and the design of synthetic ones.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002261 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02261&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002261

DOI: 10.1371/journal.pcbi.1002261

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002261