EconPapers    
Economics at your fingertips  
 

A Hierarchical Neuronal Model for Generation and Online Recognition of Birdsongs

Izzet B Yildiz and Stefan J Kiebel

PLOS Computational Biology, 2011, vol. 7, issue 12, 1-18

Abstract: The neuronal system underlying learning, generation and recognition of song in birds is one of the best-studied systems in the neurosciences. Here, we use these experimental findings to derive a neurobiologically plausible, dynamic, hierarchical model of birdsong generation and transform it into a functional model of birdsong recognition. The generation model consists of neuronal rate models and includes critical anatomical components like the premotor song-control nucleus HVC (proper name), the premotor nucleus RA (robust nucleus of the arcopallium), and a model of the syringeal and respiratory organs. We use Bayesian inference of this dynamical system to derive a possible mechanism for how birds can efficiently and robustly recognize the songs of their conspecifics in an online fashion. Our results indicate that the specific way birdsong is generated enables a listening bird to robustly and rapidly perceive embedded information at multiple time scales of a song. The resulting mechanism can be useful for investigating the functional roles of auditory recognition areas and providing predictions for future birdsong experiments. Author Summary: How do birds communicate via their songs? Investigating this question may not only lead to a better understanding of communication via birdsong, but many believe that the answer will also give us hints about how humans decode speech from complex sound wave modulations. In birds, the output and neuronal responses of the song generation system can be measured precisely and this has resulted in a considerable body of experimental findings. We used these findings to assemble a complete model of birdsong generation and use it as the basis for constructing a potentially neurobiologically plausible, artificial recognition system based on state-of-the-art Bayesian inference techniques. Our artificial system resembles the real birdsong system when performing recognition tasks and may be used as a functional model to explain and predict experimental findings in song recognition.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002303 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02303&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002303

DOI: 10.1371/journal.pcbi.1002303

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002303