EconPapers    
Economics at your fingertips  
 

Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

Edward B Baskerville, Andy P Dobson, Trevor Bedford, Stefano Allesina, T Michael Anderson and Mercedes Pascual

PLOS Computational Biology, 2011, vol. 7, issue 12, 1-11

Abstract: Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. Author Summary: The relationships among organisms in an ecosystem can be described by a food web, a network representing who eats whom. Food web organization has important consequences for how populations change over time, how one species extinction can cause others, and how robustly ecosystems respond to disturbances. We present a computational method to analyze how species are organized into groups based on their interactions. We apply this method to the plant and mammal food web from the Serengeti savanna ecosystem in Tanzania, a pristine ecosystem increasingly threatened by human impacts. This web is unusually detailed, with plants identified down to individual species and corresponding habitats. Our analysis, which differs from the compartmental studies typically done in food webs, reveals that functionally distinct groups of carnivores, herbivores, and plants make up the Serengeti web, and that plant groups reflect distinct habitat types. Furthermore, since herbivore groups feed across multiple plant groups, and carnivore groups feed across multiple herbivore groups, energy represents a wider range of habitats as it flows up the web. This pattern may partly explain how the ecosystem remains in balance. Additionally, our method can be easily applied to other kinds of networks and modified to find other patterns.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002321 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02321&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002321

DOI: 10.1371/journal.pcbi.1002321

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002321