EconPapers    
Economics at your fingertips  
 

Prediction by Promoter Logic in Bacterial Quorum Sensing

Navneet Rai, Rajat Anand, Krishna Ramkumar, Varun Sreenivasan, Sugat Dabholkar, K V Venkatesh and Mukund Thattai

PLOS Computational Biology, 2012, vol. 8, issue 1, 1-14

Abstract: Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR – its measured activity as a function of LuxI and LuxR levels – contains all the biochemical information required to quantitatively predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of promoter logic: to probe microscopic parameters and predict macroscopic phenotype. Author Summary: Bacterial cells constantly communicate with one another by exchanging chemical signals, which constitute a rich source of information about the proximity of friends or foes in the environment. These signals can be used to coordinate the actions of cells across a population. For example, pathogenic bacteria infecting a host can remain quiescent, only becoming virulent once they attain a sufficient cell density. Such coordination, regulated by so-called quorum-sensing systems, works on the following principle: every cell in the population secretes a specific chemical signal; the more cells there are, the more signal is generated; when individual cells sense that the signal has crossed some threshold, they launch a response. The nature of the response depends on the detailed molecular wiring of the secretion and sensing system, which can vary from species to species. It is often impossible to determine all these molecular details for any given system. Borrowing ideas from control theory, we show that this internal wiring can be largely ignored, and these systems can be considered as ‘black boxes’. Our experiments demonstrate that the measured input-output logic of the black box, which we term ‘promoter logic’, is sufficient to predict the diverse responses of different quorum-sensing systems.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002361 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02361&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002361

DOI: 10.1371/journal.pcbi.1002361

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002361