Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments
Sepideh Bazazi,
Frederic Bartumeus,
Joseph J Hale and
Iain D Couzin
PLOS Computational Biology, 2012, vol. 8, issue 5, 1-10
Abstract:
Animals can exhibit complex movement patterns that may be the result of interactions with their environment or may be directly the mechanism by which their behaviour is governed. In order to understand the drivers of these patterns we examine the movement behaviour of individual desert locusts in a homogenous experimental arena with minimal external cues. Locust motion is intermittent and we reveal that as pauses become longer, the probability that a locust changes direction from its previous direction of travel increases. Long pauses (of greater than 100 s) can be considered reorientation bouts, while shorter pauses (of less than 6 s) appear to act as periods of resting between displacements. We observe power-law behaviour in the distribution of move and pause lengths of over 1.5 orders of magnitude. While Lévy features do exist, locusts' movement patterns are more fully described by considering moves, pauses and turns in combination. Further analysis reveals that these combinations give rise to two behavioural modes that are organized in time: local search behaviour (long exploratory pauses with short moves) and relocation behaviour (long displacement moves with shorter resting pauses). These findings offer a new perspective on how complex animal movement patterns emerge in nature. Author Summary: The movement of organisms is an essential feature of life and is fundamental to almost all ecological and evolutionary processes. The motion of animals can have a significant impact on the environment, for example on the distribution of resources, habitat fragmentation or the spread of pests and diseases. Locusts exhibit one of the most devastating examples of animal movement, where locust swarms are a significant global pest. Therefore identifying the mechanisms of such movements is critical in understanding a range of ecological processes. An important challenge in studying animal motion is identifying the drivers of the complex movement patterns generated by organisms. Movement patterns may be the result of interactions between animals and their environment or may be directly the mechanism by which their behaviour is governed. Here we examine the movement behaviour of individual desert locusts in a homogenous experimental arena with minimal external cues. These findings offer a new perspective on how complex animal movement patterns emerge in nature.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002498 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02498&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002498
DOI: 10.1371/journal.pcbi.1002498
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().