EconPapers    
Economics at your fingertips  
 

Mechanism of Bacterial Signal Transduction Revealed by Molecular Dynamics of Tsr Dimers and Trimers of Dimers in Lipid Vesicles

Benjamin A Hall, Judith P Armitage and Mark S P Sansom

PLOS Computational Biology, 2012, vol. 8, issue 9, 1-9

Abstract: Bacterial chemoreceptors provide an important model for understanding signalling processes. In the serine receptor Tsr from E. coli, a binding event in the periplasmic domain of the receptor dimer causes a shift in a single transmembrane helix of roughly 0.15 nm towards the cytoplasm. This small change is propagated through the ∼22 nm length of the receptor, causing downstream inhibition of the kinase CheA. This requires interactions within a trimer of receptor dimers. Additionally, the signal is amplified across a 53,000 nm2 array of chemoreceptor proteins, including ∼5,200 receptor trimers-of-dimers, at the cell pole. Despite a wealth of experimental data on the system, including high resolution structures of individual domains and extensive mutagenesis data, it remains uncertain how information is communicated across the receptor from the binding event to the downstream effectors. We present a molecular model of the entire Tsr dimer, and examine its behaviour using coarse-grained molecular dynamics and elastic network modelling. We observe a large bending in dimer models between the linker domain HAMP and coiled-coil domains, which is supported by experimental data. Models of the trimer of dimers, built from the dimer models, are more constrained and likely represent the signalling state. Simulations of the models in a 70 nm diameter vesicle with a biologically realistic lipid mixture reveal specific lipid interactions and oligomerisation of the trimer of dimers. The results indicate a mechanism whereby small motions of a single helix can be amplified through HAMP domain packing, to initiate large changes in the whole receptor structure. Author Summary: To understand cell signalling events requires a physical model of the structure and behaviour of the signalling proteins involved. The methyl-accepting chemoreceptor proteins direct bacterial movement towards food sources and away from toxins. Based on experimental data we have built structural models of the serine chemoreceptor (Tsr) as a dimer, which is incapable of activating the downstream kinase CheA, and as a trimer of dimers, which can activate CheA. We have performed molecular dynamics simulation to reveal the behaviour of these two forms in a planar lipid bilayer and in a 70 nm diameter lipid vesicle with a mixture of lipids mimicking the E. coli inner membrane. We show that in isolation the dimers undergo a bending movement around the central HAMP domain, whereas the trimer-of-dimers model does not. Comparison with published experimental data suggests that these bending motions are real, and that they occur in the trimer of dimers only in response to ligand binding. Drawing together these observations with studies showing that the signalling event involves small piston motions in the transmembrane helices suggests that the bending motion is frustrated in the unliganded trimer of dimers, and that ligand binding induces bending by repacking the HAMP interface.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002685 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02685&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002685

DOI: 10.1371/journal.pcbi.1002685

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002685