EconPapers    
Economics at your fingertips  
 

Maximizing the Information Content of Experiments in Systems Biology

Juliane Liepe, Sarah Filippi, Michał Komorowski and Michael P H Stumpf

PLOS Computational Biology, 2013, vol. 9, issue 1, 1-13

Abstract: Our understanding of most biological systems is in its infancy. Learning their structure and intricacies is fraught with challenges, and often side-stepped in favour of studying the function of different gene products in isolation from their physiological context. Constructing and inferring global mathematical models from experimental data is, however, central to systems biology. Different experimental setups provide different insights into such systems. Here we show how we can combine concepts from Bayesian inference and information theory in order to identify experiments that maximize the information content of the resulting data. This approach allows us to incorporate preliminary information; it is global and not constrained to some local neighbourhood in parameter space and it readily yields information on parameter robustness and confidence. Here we develop the theoretical framework and apply it to a range of exemplary problems that highlight how we can improve experimental investigations into the structure and dynamics of biological systems and their behavior. Author Summary: For most biological signalling and regulatory systems we still lack reliable mechanistic models. And where such models exist, e.g. in the form of differential equations, we typically have only rough estimates for the parameters that characterize the biochemical reactions. In order to improve our knowledge of such systems we require better estimates for these parameters and here we show how judicious choice of experiments, based on a combination of simulations and information theoretical analysis, can help us. Our approach builds on the available, frequently rudimentary information, and identifies which experimental set-up provides most additional information about all the parameters, or individual parameters. We will also consider the related but subtly different problem of which experiments need to be performed in order to decrease the uncertainty about the behaviour of the system under altered conditions. We develop the theoretical framework in the necessary detail before illustrating its use and applying it to the repressilator model, the regulation of Hes1 and signal transduction in the Akt pathway.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002888 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02888&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002888

DOI: 10.1371/journal.pcbi.1002888

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1002888