EconPapers    
Economics at your fingertips  
 

Stability and Responsiveness in a Self-Organized Living Architecture

Simon Garnier, Tucker Murphy, Matthew Lutz, Edward Hurme, Simon Leblanc and Iain D Couzin

PLOS Computational Biology, 2013, vol. 9, issue 3, 1-10

Abstract: Robustness and adaptability are central to the functioning of biological systems, from gene networks to animal societies. Yet the mechanisms by which living organisms achieve both stability to perturbations and sensitivity to input are poorly understood. Here, we present an integrated study of a living architecture in which army ants interconnect their bodies to span gaps. We demonstrate that these self-assembled bridges are a highly effective means of maintaining traffic flow over unpredictable terrain. The individual-level rules responsible depend only on locally-estimated traffic intensity and the number of neighbours to which ants are attached within the structure. We employ a parameterized computational model to reveal that bridges are tuned to be maximally stable in the face of regular, periodic fluctuations in traffic. However analysis of the model also suggests that interactions among ants give rise to feedback processes that result in bridges being highly responsive to sudden interruptions in traffic. Subsequent field experiments confirm this prediction and thus the dual nature of stability and flexibility in living bridges. Our study demonstrates the importance of robust and adaptive modular architecture to efficient traffic organisation and reveals general principles regarding the regulation of form in biological self-assemblies. Author Summary: While migrating, the nomadic army ant Eciton burchellii forms long trails of workers that can extend over hundreds of meters in the rain forest. To facilitate the movement of sometimes millions of individuals on uneven and unpredictable terrains, part of the ant workers link together their legs and bodies to form temporary bridges over gaps along the trails. In this work we showed that these bridges were formed readily when the flow of ants hit an unspanned gap and were dismantled very quickly after traffic has ceased on the trail. However, we also observed that the bridges were formed and remained stable under a large spectrum of the traffic intensities on the trail. Using field experiments and computer simulations we discovered the construction rules used by the ants to create these living structures that are capable of enduring variations of the traffic while remaining highly responsive to its interruption. These results offer important insights about the mechanisms that regulate biological self-assemblies and they have potential applications in swarm robotics and swarm intelligence.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002984 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02984&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002984

DOI: 10.1371/journal.pcbi.1002984

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pcbi00:1002984