A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana
Christoph Schmal,
Peter Reimann and
Dorothee Staiger
PLOS Computational Biology, 2013, vol. 9, issue 3, 1-16
Abstract:
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA. Author Summary: The circadian clock organizes the day in the life of a plant by causing 24h rhythms in gene expression. For example, the core clockwork of the model plant Arabidopsis thaliana causes the transcripts encoding the RNA-binding proteins AtGRP7 and AtGRP8 to undergo high amplitude oscillations with a peak at the end of the day. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate their own expression by causing alternative splicing of their pre-mRNAs, followed by rapid degradation of the alternatively spliced transcripts. This has led to the suggestion that they represent molecular slave oscillators downstream of the core clock. Using a mathematical model we obtain insights into possible mechanisms underlying the experimentally observed dynamics, e.g. a higher impact of AtGRP7 protein compared to the impact of AtGRP8 protein on the alternative splicing explains the experimentally observed phases of their transcript. Previously, components that reciprocally repress their own transcription (double negative loops) have been shown to potentially act as a toggle switch between two states. We provide theoretical evidence that the slave oscillator could be a bistable toggle switch as well, operating at the post-transcriptional level.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002986 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 02986&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1002986
DOI: 10.1371/journal.pcbi.1002986
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().