EconPapers    
Economics at your fingertips  
 

Sensory Information and Encounter Rates of Interacting Species

Andrew M Hein and Scott A McKinley

PLOS Computational Biology, 2013, vol. 9, issue 8, 1-11

Abstract: Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the power (where is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.Author Summary: Encounters between individual organisms are an essential part of biology; in many sexually reproducing species, males and females must encounter one another in order to mate, pollinators must find flowers, and predators must locate prey before capturing and consuming them. Many species accomplish these tasks by actively searching for their targets using sensory information. Despite this, classical mathematical models used to predict the rate of encounters between searchers and their targets assume that searchers make movement decisions without using sensory information. Here we develop a mathematical framework for incorporating sensory information into searcher movement behavior to study how sensory response changes the relationship between encounter rate and target density. By comparing searchers that use sensory information to those that do not, we show that sensory response not only increases encounter rate, but that it also changes the form of the relationship between encounter rate and target density. By using sensory information, predators encounter prey at a rate that is less sensitive to changes in prey density when prey density is low. Our results demonstrate a strong connection between the usage of sensory information and the encounter rates that are so critical to survival and reproduction in nature.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003178 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03178&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003178

DOI: 10.1371/journal.pcbi.1003178

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003178