Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks
Axel von Kamp and
Steffen Klamt
PLOS Computational Biology, 2014, vol. 10, issue 1, 1-13
Abstract:
One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks.We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges.Author Summary: Mathematical modeling has become an essential tool for investigating metabolic networks. One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Accordingly, several optimization techniques have been proposed for this purpose. However, for large-scale networks, an effective method for systematic enumeration of the most efficient intervention strategies is still lacking. Herein we present MCSEnumerator, a new mathematical approach by which thousands of the smallest intervention strategies (with fewest targets) can be readily computed in large-scale metabolic models. Our approach is built upon an extended concept of Minimal Cut Sets, the latter being minimal (irreducible) combinations of reaction (or gene) deletions that will lead to the fulfilment of a given intervention goal. The strength of the presented approach is that smallest intervention strategies can be quickly calculated with neither network size nor the number of required interventions posing major challenges. Realistic application examples with E.coli demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003378 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03378&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003378
DOI: 10.1371/journal.pcbi.1003378
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().