An Integrated Model of Multiple-Condition ChIP-Seq Data Reveals Predeterminants of Cdx2 Binding
Shaun Mahony,
Matthew D Edwards,
Esteban O Mazzoni,
Richard I Sherwood,
Akshay Kakumanu,
Carolyn A Morrison,
Hynek Wichterle and
David K Gifford
PLOS Computational Biology, 2014, vol. 10, issue 3, 1-14
Abstract:
Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.Author Summary: Many proteins that regulate the activity of other genes do so by attaching to the genome at specific binding sites. The locations that a given regulatory protein will bind, and the strength or frequency of such binding at an individual location, can vary depending on the cell type. We can profile the locations that a protein binds in a particular cell type using an experimental method called ChIP-seq, followed by computational interpretation of the data. However, since the experimental data are typically noisy, it is often difficult to compare the computational analyses of ChIP-seq data across multiple experiments in order to understand any differences in binding that may occur in different cell types. In this paper, we present a new computational method named MultiGPS for simultaneously analyzing multiple related ChIP-seq experiments in an integrated manner. By analyzing all the data together in an appropriate way, we can gain a more accurate picture of where the profiled protein is binding to the genome, and we can more easily and reliably detect differences in protein binding across cell types. We demonstrate the MultiGPS software using a new analysis of the regulatory protein Cdx2 in three different developmental cell types.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003501 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03501&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003501
DOI: 10.1371/journal.pcbi.1003501
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().