Dynamic Alignment Models for Neural Coding
Sepp Kollmorgen and
Richard H R Hahnloser
PLOS Computational Biology, 2014, vol. 10, issue 3, 1-19
Abstract:
Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes.Author Summary: The brain computes using electrical discharges of nerve cells, so called spikes. Specific sensory stimuli, for instance, tones, often lead to specific spiking patterns. The same is true for behavior: specific motor actions are generated by specific spiking patterns. The relationship between neural activity and stimuli or motor actions can be difficult to infer, because of dynamic dependencies and hidden nonlinearities. For instance, in a freely behaving animal a neuron could exhibit variable levels of sensory and motor involvements depending on the state of the animal and on current motor plans—a situation that cannot be accounted for by many existing models. Here we present a new type of model that is specifically designed to cope with such changing regularities. We outline the mathematical framework and show, through computer simulations and application to recorded neural data, how MPHs can advance our understanding of stimulus-response relationships.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003508 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03508&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003508
DOI: 10.1371/journal.pcbi.1003508
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().