EconPapers    
Economics at your fingertips  
 

Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data

Ciira wa Maina, Antti Honkela, Filomena Matarese, Korbinian Grote, Hendrik G Stunnenberg, George Reid, Neil D Lawrence and Magnus Rattray

PLOS Computational Biology, 2014, vol. 10, issue 5, 1-17

Abstract: Gene transcription mediated by RNA polymerase II (pol-II) is a key step in gene expression. The dynamics of pol-II moving along the transcribed region influence the rate and timing of gene expression. In this work, we present a probabilistic model of transcription dynamics which is fitted to pol-II occupancy time course data measured using ChIP-Seq. The model can be used to estimate transcription speed and to infer the temporal pol-II activity profile at the gene promoter. Model parameters are estimated using either maximum likelihood estimation or via Bayesian inference using Markov chain Monte Carlo sampling. The Bayesian approach provides confidence intervals for parameter estimates and allows the use of priors that capture domain knowledge, e.g. the expected range of transcription speeds, based on previous experiments. The model describes the movement of pol-II down the gene body and can be used to identify the time of induction for transcriptionally engaged genes. By clustering the inferred promoter activity time profiles, we are able to determine which genes respond quickly to stimuli and group genes that share activity profiles and may therefore be co-regulated. We apply our methodology to biological data obtained using ChIP-seq to measure pol-II occupancy genome-wide when MCF-7 human breast cancer cells are treated with estradiol (E2). The transcription speeds we obtain agree with those obtained previously for smaller numbers of genes with the advantage that our approach can be applied genome-wide. We validate the biological significance of the pol-II promoter activity clusters by investigating cluster-specific transcription factor binding patterns and determining canonical pathway enrichment. We find that rapidly induced genes are enriched for both estrogen receptor alpha (ER) and FOXA1 binding in their proximal promoter regions.Author Summary: Cells express proteins in response to changes in their environment so as to maintain normal function. An initial step in the expression of proteins is transcription, which is mediated by RNA polymerase II (pol-II). To understand changes in transcription arising due to stimuli it is useful to model the dynamics of transcription. We present a probabilistic model of pol-II transcription dynamics that can be used to compute RNA transcription speed and infer the temporal pol-II activity at the gene promoter. The inferred promoter activity profile is used to determine genes that are responding in a coordinated manner to stimuli and are therefore potentially co-regulated. Model parameters are inferred using data from high-throughput sequencing assays, such as ChIP-Seq and GRO-Seq, and can therefore be applied genome-wide in an unbiased manner. We apply the method to pol-II ChIP-Seq time course data from breast cancer cells stimulated by estradiol in order to uncover the dynamics of early response genes in this system.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003598 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03598&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003598

DOI: 10.1371/journal.pcbi.1003598

Access Statistics for this article

More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pcbi00:1003598