Computational Modeling and Analysis of Iron Release from Macrophages
Alka A Potdar,
Joydeep Sarkar,
Nupur K Das,
Paroma Ghosh,
Miklos Gratzl,
Paul L Fox and
Gerald M Saidel
PLOS Computational Biology, 2014, vol. 10, issue 7, 1-19
Abstract:
A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.Author Summary: Iron metabolism is an important physiological phenomenon essential for sustaining life. There is a tight regulation of iron levels in humans and both deficiency and overload can lead to disorders such as anemia and hemochromatosis. Recycling of iron in human body via macrophage iron release is crucial to maintain healthy iron levels. However, a computational model is needed to quantitatively analyze the mechanism underlying a key process in iron homeostasis, which is the release of iron from the macrophages. Using mechanistic, mathematical models to simulate experimental data, we found a novel mechanism by which macrophages release iron. A comparison of experimental data with model simulations shows that a currently accepted passive-gradient mechanism cannot represent the iron-release process from macrophages. However, our model with a facilitated-transport mechanism associated with ferroportin (only known protein for iron export) accurately reproduces the iron release process. This model quantifies for the first time the detailed molecular mechanism associated with iron transport via ferroportin. This quantitative predictive model of cellular iron efflux is essential for physiologically relevant simulation of whole-body model of iron metabolism in healthy and disease states.
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003701 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03701&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003701
DOI: 10.1371/journal.pcbi.1003701
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().